Product news

Brushless DC Motor

Brushless DC motors were developed from conventional brushed DC motors with the availability of solid-state power semiconductors. So, why do we discuss brushless DC motors in a chapter on AC motors?

Brushless DC motors are similar to AC synchronous motors. The major difference is that synchronous motors develop a sinusoidal back EMF, as compared to a rectangular, or trapezoidal, back EMF for brushless DC motors.

Both have stator created rotating magnetic fields producing torque in a magnetic rotor.

Synchronous motors are usually large multi-kilowatt size, often with electromagnet rotors. True synchronous motors are considered to be single speed, a submultiple of the powerline frequency. Brushless DC motors tend to be small– a few watts to tens of watts, with permanent magnet rotors.

The speed of a brushless DC motor is not fixed unless driven by a phased locked loop slaved to a reference frequency. The style of construction is either cylindrical or pancake.


Cylindrical construction: (a) outside rotor, (b) inside rotor

Cylindrical construction: (a) outside rotor, (b) inside rotor


The most usual construction, cylindrical, can take on two forms (figure above). The most common cylindrical style is with the rotor on the inside, above right. This style of motor is used in hard disk drives. It is also possible to put the rotor on the outside surrounding the stator.

Such is the case with brushless DC fan motors, without the shaft. This style of construction may be short and stout. However, the direction of the magnetic flux is radial with respect to the rotational axis.


Pancake motor construction: (a) single stator, (b) double stator

Pancake motor construction: (a) single stator, (b) double stator


High torque pancake motors may have stator coils on both sides of the rotor (figure above-b).

Lower torque applications like floppy disk drive motors suffice with a stator coil on one side of the rotor, (Figure above-a). The direction of the magnetic flux is axial, that is, parallel to the axis of rotation.

The commutation function may be performed by various shaft position sensors: optical encoder, a magnetic encoder (resolver, synchro, etc), or Hall effect magnetic sensors. Small inexpensive motors use Hall effect sensors.

A Hall effect sensor is a semiconductor device where the electron flow is affected by a magnetic field perpendicular to the direction of current flow. It looks like a four-terminal variable resistor network. The voltages at the two outputs are complementary.

Application of a magnetic field to the sensor causes a small voltage change at the output. The Hall output may drive a comparator to provide for the more stable drive to the power device. Or, it may drive a compound transistor stage if properly biased.

More modern Hall effect sensors may contain an integrated amplifier and digital circuitry. This 3-lead device may directly drive the power transistor feeding a phase winding. The sensor must be mounted close to the permanent magnet rotor to sense its position.


Hall effect sensors commutate 3-φ brushless DC motor

Hall effect sensors commutate 3-φ brushless DC motor


The simple cylindrical 3-φ motor (figure above) is commutated by a Hall effect device for each of the three stator phases. The changing position of the permanent magnet rotor is sensed by the Hall device as the polarity of the passing rotor pole changes.

This Hall signal is amplified so that the stator coils are driven with the proper current. Not shown here, the Hall signals may be processed by combinatorial logic for more efficient drive waveforms.

The above cylindrical motor could drive a hard drive if it were equipped with a phased locked loop (PLL) to maintain a constant speed. Similar circuitry could drive the pancake floppy disk drive motor (figure below). Again, it would need a PLL to maintain a constant speed.


Brushless pancake motor

Brushless pancake motor


The 3-φ pancake motor has 6-stator poles and 8-rotor poles. The rotor is a flat ferrite ring magnetized with eight axially magnetized alternating poles. We do not show that the rotor is capped by a mild steel plate for mounting to the bearing in the middle of the stator.

The steel plate also helps complete the magnetic circuit. The stator poles are also mounted atop a steel plate, helping to close the magnetic circuit.

The flat stator coils are trapezoidal to more closely fit the coils, and approximate the rotor poles. The 6-stator coils comprise three winding phases.

If the three stator phases were successively energized, a rotating magnetic field would be generated.

The permanent magnet rotor would follow as in the case of a synchronous motor. A two-pole rotor would follow this field at the same rotation rate as the rotating field. However, our 8-pole rotor will rotate at a submultiple of this rate due to the extra poles in the rotor.

Scan the qr codeclose
the qr code